Enzymes for the homeland defense: optimizing phosphotriesterase for the hydrolysis of organophosphate nerve agents.
نویسندگان
چکیده
Phosphotriesterase (PTE) from soil bacteria is known for its ability to catalyze the detoxification of organophosphate pesticides and chemical warfare agents. Most of the organophosphate chemical warfare agents are a mixture of two stereoisomers at the phosphorus center, and the S(P)-enantiomers are significantly more toxic than the R(P)-enantiomers. In previous investigations, PTE variants were created through the manipulation of the substrate binding pockets and these mutants were shown to have greater catalytic activities for the detoxification of the more toxic S(P)-enantiomers of nerve agent analogues for GB, GD, GF, VX, and VR than the less toxic R(P)-enantiomers. In this investigation, alternate strategies were employed to discover additional PTE variants with significant improvements in catalytic activities relative to that of the wild-type enzyme. Screening and selection techniques were utilized to isolate PTE variants from randomized libraries and site specific modifications. The catalytic activities of these newly identified PTE variants toward the S(P)-enantiomers of chromophoric analogues of GB, GD, GF, VX, and VR have been improved up to 15000-fold relative to that of the wild-type enzyme. The X-ray crystal structures of the best PTE variants were determined. Characterization of these mutants with the authentic G-type nerve agents has confirmed the expected improvements in catalytic activity against the most toxic enantiomers of GB, GD, and GF. The values of k(cat)/K(m) for the H257Y/L303T (YT) mutant for the hydrolysis of GB, GD, and GF were determined to be 2 × 10(6), 5 × 10(5), and 8 × 10(5) M(-1) s(-1), respectively. The YT mutant is the most proficient enzyme reported thus far for the detoxification of G-type nerve agents. These results support a combinatorial strategy of rational design and directed evolution as a powerful tool for the discovery of more efficient enzymes for the detoxification of organophosphate nerve agents.
منابع مشابه
Bacterial detoxification of organophosphate nerve agents.
Bacterial enzymes have been isolated that catalyze the hydrolysis of organophosphate nerve agents with high-rate enhancements and broad substrate specificity. Mutant forms of these enzymes have been constructed through rational redesign of the active-site binding pockets and random mutagenesis to create protein variants that are optimized for the detoxification of agricultural insecticides and ...
متن کاملDetoxification of organophosphate nerve agents by bacterial phosphotriesterase.
Organophosphates have been widely used as insecticides and chemical warfare agents. The health risks associated with these agents have necessitated the need for better detoxification and bioremediation tools. Bacterial enzymes capable of hydrolyzing the lethal organophosphate nerve agents are of special interest. Phosphotriesterase (PTE) isolated from the soil bacteria Pseudomonas diminuta disp...
متن کاملStereochemical Constraints on the Catalytic Hydrolysis of Organophosphate Nerve Agents by Phosphotriesterase
متن کامل
Three-dimensional structure of phosphotriesterase: an enzyme capable of detoxifying organophosphate nerve agents.
Organophosphates, such as parathion and paraoxon, constitute the largest class of insecticides currently used in industrialized nations. In addition, many of these compounds are known to inhibit mammalian acetylcholinesterases thereby acting as nerve agents. Consequently, organophosphate-degrading enzymes are of considerable interest in light of their ability to detoxify such compounds. Here we...
متن کاملDetoxification of organophosphate pesticides using a nylon based immobilized phosphotriesterase from Pseudomonas diminuta.
A partially purified phophotriesterase was successfully immobilized onto nylon 6 and 66 membranes, nylon 11 powder, and nylon tubing. Up to 9000 U of enzyme activity was immobilized onto 2000 cm2 of a nylon 6 membrane where 1 U is the amount of enzyme necessary to catalyze the hydrolysis of 1.0 mumol of paraoxon/min at 25 degrees C. The nylon 66 membrane-bound phosphotriesterase was characteriz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 51 32 شماره
صفحات -
تاریخ انتشار 2012